
GDC 2000:
Programming Session

March 10, 2000

GDC 2000:GDC 2000:
Programming SessionProgramming Session

March 10, 2000March 10, 2000

Shadow Mapping
with Today’s OpenGL Hardware

Mark J. Kilgard
Graphics Software Engineer
NVIDIA Corporation

Motivation for
Better Shadows

Shadows increase scene realism
• Real world has shadows

• More control of the game’s feel

– dramatic effects

– spooky effects

• Other art forms recognize the value of shadows

• But yet most games lack realistic shadows

Shadows increase scene realismShadows increase scene realism
•• Real world has shadowsReal world has shadows

•• More control of the game’s feelMore control of the game’s feel

–– dramatic effectsdramatic effects

–– spooky effectsspooky effects

•• Other art forms recognize the value of shadowsOther art forms recognize the value of shadows

•• But yet most games lack realistic shadowsBut yet most games lack realistic shadows

Common Real-time
Shadow Techniques

Shadow
volumes
ShadowShadow
volumesvolumes

Light mapsLight mapsLight maps

Projected
planar
shadows

ProjectedProjected
planarplanar
shadowsshadows

Hybrid
approaches

HybridHybrid
approachesapproaches

Problems with Common
Shadow Techniques

Mostly hacks with lots of limitations
• Projected planar shadows

– well works only on flat surfaces

• Stenciled shadow volumes

– determining the shadow volume is hard work

• Light maps

– totally unsuited for dynamic shadows

• In general, hard to get everything shadowing everything

Mostly hacks with lots of limitationsMostly hacks with lots of limitations
•• Projected planar shadowsProjected planar shadows

–– well works only on flat surfaceswell works only on flat surfaces

•• Stenciled shadow volumesStenciled shadow volumes

–– determining the shadow volume is hard workdetermining the shadow volume is hard work

•• Light mapsLight maps

–– totally unsuited for dynamic shadowstotally unsuited for dynamic shadows

•• In general, hard to get everything shadowing everythingIn general, hard to get everything shadowing everything

Another Technique:
Shadow Mapping

Image-space shadow determination
• Lance Williams published the basic idea in 1978

– By coincidence, same year Jim Blinn invented bump
mapping (a great vintage year for graphics)

• Completely image-space algorithm
– means no knowledge of scene’s geometry is required
– must deal with aliasing artifacts

• Well known software rendering technique
– Pixar’s RenderMan uses the algorithm

ImageImage--space shadow determinationspace shadow determination
•• Lance Williams published the basic idea in 1978Lance Williams published the basic idea in 1978

–– By coincidence, same year Jim Blinn invented bump By coincidence, same year Jim Blinn invented bump
mapping (a great vintage year for graphics)mapping (a great vintage year for graphics)

•• Completely imageCompletely image--space algorithmspace algorithm
–– means no knowledge of scene’s geometry is requiredmeans no knowledge of scene’s geometry is required
–– must deal with aliasing artifactsmust deal with aliasing artifacts

•• Well known software rendering techniqueWell known software rendering technique
–– Pixar’s RenderMan uses the algorithmPixar’s RenderMan uses the algorithm

Shadow Mapping
References

Important SIGGRAPH papers
• Lance Williams, “Casting Curved Shadows on Curved

Surfaces,” SIGGRAPH 78

• William Reeves, David Salesin, and Robert Cook (Pixar),
“Rendering antialiased shadows with depth maps,”
SIGGRAPH 87

• Mark Segal, et. al. (SGI), “Fast Shadows and Lighting Effects
Using Texture Mapping,” SIGGRAPH 92

Important SIGGRAPH papersImportant SIGGRAPH papers
•• Lance Williams, “Casting Curved Shadows on Curved Lance Williams, “Casting Curved Shadows on Curved

Surfaces,” SIGGRAPH 78Surfaces,” SIGGRAPH 78

•• William Reeves, David Salesin, and Robert Cook (Pixar), William Reeves, David Salesin, and Robert Cook (Pixar),
“Rendering antialiased shadows with depth maps,” “Rendering antialiased shadows with depth maps,”
SIGGRAPH 87SIGGRAPH 87

•• Mark Segal, et. al. (SGI), “Fast Shadows and Lighting Effects Mark Segal, et. al. (SGI), “Fast Shadows and Lighting Effects
Using Texture Mapping,” SIGGRAPH 92Using Texture Mapping,” SIGGRAPH 92

The Shadow Mapping
Concept (1)

Depth testing from the light’s point-of-view
• Two pass algorithm

• First, render depth buffer from the light’s point-of-view

– the result is a “depth map” or “shadow map”

– essentially a 2D function indicating the depth of the closest
pixels to the light

• This depth map is used in the second pass

Depth testing from the light’s pointDepth testing from the light’s point--ofof--viewview
•• Two pass algorithmTwo pass algorithm

•• First, render depth buffer from the light’s pointFirst, render depth buffer from the light’s point--ofof--viewview

–– the result is a “depth map” or “shadow map”the result is a “depth map” or “shadow map”

–– essentially a 2D function indicating the depth of the closest essentially a 2D function indicating the depth of the closest
pixels to the lightpixels to the light

•• This depth map is used in the second pass This depth map is used in the second pass

The Shadow Mapping
Concept (2)

Shadow determination with the depth map
• Second, render scene from the eye’s point-of-view

• For each rasterized fragment

– determine fragment’s XYZ position relative to the light

– this light position should be setup to match the frustum
used to create the depth map

– compare the depth value at light position XY in the depth
map to fragment’s light position Z

Shadow determination with the depth mapShadow determination with the depth map
•• Second, render scene from the eye’s pointSecond, render scene from the eye’s point--ofof--viewview

•• For each rasterized fragmentFor each rasterized fragment

–– determine fragment’s XYZ position relative to the lightdetermine fragment’s XYZ position relative to the light

–– this light position should be setup to match the frustum this light position should be setup to match the frustum
used to create the depth mapused to create the depth map

–– compare the depth value at light position XY in the depth compare the depth value at light position XY in the depth
map to fragment’s light position Zmap to fragment’s light position Z

The Shadow Mapping
Concept (3)

The Shadow Map Comparison
• Two values

– A = Z value from depth map at fragment’s light XY position

– B = Z value of fragment’s XYZ light position

• If B is greater than A, then there must be something closer to
the light than the fragment

– then the fragment is shadowed

• If A and B are approximately equal, the fragment is lit

The Shadow Map ComparisonThe Shadow Map Comparison
•• Two valuesTwo values

–– A = Z value from depth map at fragment’s light XY positionA = Z value from depth map at fragment’s light XY position

–– B = Z value of fragment’s XYZ light positionB = Z value of fragment’s XYZ light position

•• If B is greater than A, then there must be something closer to If B is greater than A, then there must be something closer to
the light than the fragmentthe light than the fragment

–– then the fragment is shadowedthen the fragment is shadowed

•• If A and B are approximately equal, the fragment is litIf A and B are approximately equal, the fragment is lit

Shadow Mapping
with a picture in 2D

light
source

eye
position

depth map Z = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
aka the frame buffer

The A < B shadowed fragment caseThe A < B shadowed fragment caseThe A < B shadowed fragment case

Shadow Mapping
with a picture in 2D

light
source

eye
position

depth map Z = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
aka the frame buffer

The A ≅≅≅≅ B unshadowed fragment caseThe A The A ≅≅≅≅≅≅≅≅ B unshadowed fragment caseB unshadowed fragment case

Shadow Mapping
with a picture in 2D
Note image precision mismatch!Note image precision mismatch!Note image precision mismatch!

The depth map
could be at a
different resolution
from the framebuffer

This mismatch can
lead to artifacts

The depth mapThe depth map
could be at acould be at a
different resolutiondifferent resolution
from the framebufferfrom the framebuffer

This mismatch canThis mismatch can
lead to artifactslead to artifacts

Visualizing the Shadow
Mapping Technique (1)

A fairly complex scene with shadowsA fairly complex scene with shadowsA fairly complex scene with shadows

the point
light source

the pointthe point
light sourcelight source

Visualizing the Shadow
Mapping Technique (2)

Compare with and without shadowsCompare with and without shadowsCompare with and without shadows

with shadowswith shadowswith shadows without shadowswithout shadowswithout shadows

Visualizing the Shadow
Mapping Technique (3)

The scene from the light’s point-of-viewThe scene from the light’s pointThe scene from the light’s point--ofof--viewview

FYI: from the
eye’s point-of-view
again

FYI: from theFYI: from the
eye’s pointeye’s point--ofof--viewview
againagain

Visualizing the Shadow
Mapping Technique (4)

The depth buffer from the light’s point-of-viewThe depth buffer from the light’s pointThe depth buffer from the light’s point--ofof--viewview

FYI: from the
light’s point-of-view
again

FYI: from theFYI: from the
light’s pointlight’s point--ofof--viewview
againagain

Visualizing the Shadow
Mapping Technique (5)

Projecting the depth map onto the eye’s viewProjecting the depth map onto the eye’s viewProjecting the depth map onto the eye’s view

FYI: depth map for
light’s point-of-view
again

FYI: depth map forFYI: depth map for
light’s pointlight’s point--ofof--viewview
againagain

Visualizing the Shadow
Mapping Technique (6)

Projecting light’s planar distance onto eye’s viewProjecting light’s planar distance onto eye’s viewProjecting light’s planar distance onto eye’s view

Visualizing the Shadow
Mapping Technique (6)

Comparing light distance to light depth map Comparing light distance to light depth map Comparing light distance to light depth map

Green is where
the light planar

distance and
the light depth

map are
approximately

equal

Green is where Green is where
the light planar the light planar

distance and distance and
the light depth the light depth

map are map are
approximately approximately

equalequal

Non-green is
where shadows
should be

NonNon--green is green is
where shadows where shadows
should beshould be

Visualizing the Shadow
Mapping Technique (7)

Scene with shadowsScene with shadowsScene with shadows

Notice how
specular

highlights
never appear in

shadows

Notice how Notice how
specular specular

highlights highlights
never appear in never appear in

shadowsshadows

Notice how
curved
surfaces cast
shadows on
each other

Notice how Notice how
curved curved
surfaces cast surfaces cast
shadows on shadows on
each othereach other

Construct
Light View Depth Map

Realizing the theory in practice
• Constructing the depth map

– use existing hardware depth buffer

– read back the depth buffer contents

• Depth map can copied to a 2D texture

– unfortunately, depth values tend to require more precision
than 8-bit typical for textures (more on this later)

Realizing the theory in practiceRealizing the theory in practice
•• Constructing the depth mapConstructing the depth map

–– use existing hardware depth bufferuse existing hardware depth buffer

–– read back the depth buffer contentsread back the depth buffer contents

•• Depth map can copied to a 2D textureDepth map can copied to a 2D texture

–– unfortunately, depth values tend to require more precision unfortunately, depth values tend to require more precision
than 8than 8--bit typical for textures (more on this later)bit typical for textures (more on this later)

Render Scene and
Access the Depth Texture

Realizing the theory in practice
• Fragment’s light position can be generated using eye-linear

texture coordinate generation

– specifically OpenGL’s GL_EYE_LINEAR texgen

– generate homogenous (s, t, r, q) texture coordinates as
light-space (x, y, z, w)

– T&L engines such as GeForce accelerate texgen!

– relies on projective texturing

Realizing the theory in practiceRealizing the theory in practice
•• Fragment’s light position can be generated using eyeFragment’s light position can be generated using eye--linear linear

texture coordinate generationtexture coordinate generation

–– specifically OpenGL’s GL_EYE_LINEAR texgenspecifically OpenGL’s GL_EYE_LINEAR texgen

–– generate homogenous (s, t, r, q) texture coordinates as generate homogenous (s, t, r, q) texture coordinates as
lightlight--space (x, y, z, w)space (x, y, z, w)

–– T&L engines such as GeForce accelerate texgen!T&L engines such as GeForce accelerate texgen!

–– relies on relies on projective texturingprojective texturing

What is
Projective Texturing?

An intuition for projective texturing
• The slide projector analogy

An intuition for projective texturingAn intuition for projective texturing
•• The slide projector analogyThe slide projector analogy

Source: Wolfgang [99]Source: Wolfgang [99]Source: Wolfgang [99]

About
Projective Texturing (1)

First, what is perspective-correct texturing?
• Normal 2D texture mapping uses (s, t) coordinates

• 2D perspective-correct texture mapping

– means (s, t) should be interpolated linearly in eye-space

– so compute per-vertex s/w, t/w, and 1/w

– linearly interpolated these three parameters over polygon

– per-fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) / (1/w)

– results in per-fragment perspective correct (s’, t’)

First, what is perspectiveFirst, what is perspective--correct texturing?correct texturing?
•• Normal 2D texture mapping uses (s, t) coordinatesNormal 2D texture mapping uses (s, t) coordinates

•• 2D perspective2D perspective--correct texture mappingcorrect texture mapping

–– means (s, t) should be interpolated linearly in eyemeans (s, t) should be interpolated linearly in eye--spacespace

–– so compute perso compute per--vertex s/w, t/w, and 1/wvertex s/w, t/w, and 1/w

–– linearly interpolated these three parameters over polygonlinearly interpolated these three parameters over polygon

–– perper--fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) / (1/w)fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) / (1/w)

–– results in perresults in per--fragment perspective correct (s’, t’)fragment perspective correct (s’, t’)

About
Projective Texturing (2)

So what is projective texturing?
• Now consider homogeneous texture coordinates

– (s, t, r, q) --> (s/q, r/q, t/q)

– Similar to homogeneous clip coordinates where
(x, y, z, w) = (x/w, y/w, z/w)

• Idea is to have (s/q, r/q, t/q) be projected per-fragment

• This requires a per-fragment divider

– yikes, dividers in hardware are fairly expensive

So what is projective texturing?So what is projective texturing?
•• Now consider homogeneous texture coordinatesNow consider homogeneous texture coordinates

–– (s, t, r, q) (s, t, r, q) ----> (s/q, r/q, t/q)> (s/q, r/q, t/q)

–– Similar to homogeneous clip coordinates whereSimilar to homogeneous clip coordinates where
(x, y, z, w) = (x/w, y/w, z/w)(x, y, z, w) = (x/w, y/w, z/w)

•• Idea is to have (s/q, r/q, t/q) be projected perIdea is to have (s/q, r/q, t/q) be projected per--fragmentfragment

•• This requires a perThis requires a per--fragment dividerfragment divider

–– yikes, dividers in hardware are fairly expensiveyikes, dividers in hardware are fairly expensive

About
Projective Texturing (3)

Hardware designer’s view of texturing
• Perspective-correct texturing is a practical requirement

– otherwise, textures “swim”

– perspective-correct texturing already requires the
hardware expense of a per-fragment divider

• Clever idea [Segal, et.al. ‘92]

– interpolate q/w instead of simply 1/w

– so projective texturing is practically free if you already
do perspective-correct texturing!

Hardware designer’s view of texturingHardware designer’s view of texturing
•• PerspectivePerspective--correct texturing is a practical requirementcorrect texturing is a practical requirement

–– otherwise, textures “swim”otherwise, textures “swim”

–– perspectiveperspective--correct texturing already requires the correct texturing already requires the
hardware expense of a perhardware expense of a per--fragment dividerfragment divider

•• Clever idea [Segal, et.al. ‘92]Clever idea [Segal, et.al. ‘92]

–– interpolate q/w instead of simply 1/winterpolate q/w instead of simply 1/w

–– so projective texturing is practically free if you alreadyso projective texturing is practically free if you already
do perspectivedo perspective--correct texturing!correct texturing!

About
Projective Texturing (4)

Tricking hardware into doing projective textures
• By interpolating q/w, hardware computes per-fragment

– (s/w) / (q/w) = s/q

– (t/w) / (q/w) = t/q

• Net result: projective texturing

– OpenGL specifies projective texturing

– only overhead is multiplying 1/w by q

– but this is per-vertex

Tricking hardware into doing projective texturesTricking hardware into doing projective textures
•• By interpolating q/w, hardware computes perBy interpolating q/w, hardware computes per--fragmentfragment

–– (s/w) / (q/w) = s/q(s/w) / (q/w) = s/q

–– (t/w) / (q/w) = t/q(t/w) / (q/w) = t/q

•• Net result: projective texturingNet result: projective texturing

–– OpenGL specifies projective texturingOpenGL specifies projective texturing

–– only overhead is multiplying 1/w by qonly overhead is multiplying 1/w by q

–– but this is perbut this is per--vertexvertex

Projective Texturing
Multitexturing

An aside about projective multi-texturing
• Multi-texturing is easier if all texture units are required only to

be perspective-correct

– just requires a single hyperbolic interpolator (effectively
shares a single divider among multiple texture units)

– because 1/w is the same for all texture units

• But multi-textured projective textures is harder

– each texture unit could have a different q

– therefore a different q/w per texture unit

An aside about projective multiAn aside about projective multi--texturingtexturing
•• MultiMulti--texturing is easier if all texture units are required only to texturing is easier if all texture units are required only to

be perspectivebe perspective--correctcorrect

–– just requires a single hyperbolic interpolator (effectively just requires a single hyperbolic interpolator (effectively
shares a single divider among multiple texture units)shares a single divider among multiple texture units)

–– because 1/w is the same for all texture unitsbecause 1/w is the same for all texture units

•• But multiBut multi--textured projective textures is hardertextured projective textures is harder

–– each texture unit could have a different qeach texture unit could have a different q

–– therefore a different q/w per texture unittherefore a different q/w per texture unit

NVIDIA’s
Projective Texturing Story

Different generations differ
• TNT generation has a single shared hyperbolic interpolator

– independently projected dual textures do not work

– not enough gates for dual-projective in TNT timeframe

• GeForce generation has distinct q/w hyperbolic interpolators
for both texture units (bigger gate budget buys correctness)

– dual projective textures works

• Not sure what other vendors do

Different generations differDifferent generations differ
•• TNT generation has a single shared hyperbolic interpolatorTNT generation has a single shared hyperbolic interpolator

–– independently projected dual textures do not workindependently projected dual textures do not work

–– not enough gates for dualnot enough gates for dual--projective in TNT timeframeprojective in TNT timeframe

•• GeForce generation has distinct q/w hyperbolic interpolators GeForce generation has distinct q/w hyperbolic interpolators
for both texture units (bigger gate budget buys correctness)for both texture units (bigger gate budget buys correctness)

–– dual projective textures worksdual projective textures works

•• Not sure what other vendors doNot sure what other vendors do

Back to the Shadow
Mapping Discussion . . .

Assign light-space texture coordinates via texgen
• Transform eye-space (x, y, z, w) coordinates to the light’s

view frustum (match how the light’s depth map is generated)

• Further transform these coordinates to map directly into the
light view’s depth map

• Expressible as a projective transform

– load this transform into the 4 eye linear plane equations
for S, T, and Q coordinates

• (s/q, t/q) will map to light’s depth map texture

Assign lightAssign light--space texture coordinates via texgenspace texture coordinates via texgen
•• Transform eyeTransform eye--space (x, y, z, w) coordinates to the light’s space (x, y, z, w) coordinates to the light’s

view frustum (match how the light’s depth map is generated)view frustum (match how the light’s depth map is generated)

•• Further transform these coordinates to map directly into the Further transform these coordinates to map directly into the
light view’s depth maplight view’s depth map

•• Expressible as a projective transformExpressible as a projective transform

–– load this transform into the 4 eye linear plane equations load this transform into the 4 eye linear plane equations
for S, T, and Q coordinatesfor S, T, and Q coordinates

•• (s/q, t/q) will map to light’s depth map texture(s/q, t/q) will map to light’s depth map texture

OpenGL’s Standard
Vertex Coordinate Transform

From object coordinates to window coordinatesFrom object coordinates to window coordinatesFrom object coordinates to window coordinates

object

coordinates
(x, y, z, w)

objectobject

coordinatescoordinates
(x, y, z, w)(x, y, z, w)

eye

coordinates
(x, y, z, w)

eyeeye

coordinatescoordinates
(x, y, z, w)(x, y, z, w)

modelview
matrix

modelviewmodelview
matrixmatrix

projection
matrix

projectionprojection
matrixmatrix

divide
by w

dividedivide
by wby w

viewport &
depth range
viewport &viewport &

depth rangedepth range
normalized

device
coordinates

(x, y, z)

normalized normalized

devicedevice
coordinatescoordinates

(x, y, z)(x, y, z)

clip

coordinates
(x, y, z, w)

clipclip

coordinatescoordinates
(x, y, z, w)(x, y, z, w)

window

coordinates

windowwindow

coordinatescoordinates
onward to
primitive
assembly

onward toonward to
primitiveprimitive
assemblyassembly

(x, y, z)(x, y, z)(x, y, z)

Eye Linear Texture
Coordinate Generation

Generating texture coordinates from eye-spaceGenerating texture coordinates from eyeGenerating texture coordinates from eye--spacespace

object

coordinates

objectobject

coordinatescoordinates

eye

coordinates

eyeeye

coordinatescoordinates
modelview

matrix
modelviewmodelview

matrixmatrix
projection

matrix
projectionprojection

matrixmatrix

divide
by w

dividedivide
by wby w

viewport &
depth range
viewport &viewport &

depth rangedepth range
normalized

device
coordinates

normalized normalized

devicedevice
coordinatescoordinates

clip

coordinates

clipclip

coordinatescoordinates

window

coordinates

windowwindow

coordinatescoordinates

eye-linear
plane

equations

eyeeye--linearlinear
planeplane

equationsequations
(s, t, r, q)(s, t, (s, t, rr, q), q)

(x, y, z)(x, y, z)(x, y, z)

Setting Up
Eye Linear Texgen

With OpenGL
GLfloat Splane[4], Tplane[4], Rplane[4], Qplane[4];
glTexGenfv(GL_S, GL_EYE_PLANE, Splane);
glTexGenfv(GL_T, GL_EYE_PLANE, Tplane);
glTexGenfv(GL_R, GL_EYE_PLANE, Rplane);
glTexGenfv(GL_Q, GL_EYE_PLANE, Qplane);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

Each plane equation is transformed by current inverse
modelview matrix (a very handy thing for us)

With OpenGLWith OpenGL
GLfloat Splane[4], Tplane[4], Rplane[4], Qplane[4];GLfloat Splane[4], Tplane[4], Rplane[4], Qplane[4];
glTexGenfv(GL_S, GL_EYE_PLANE, Splane);glTexGenfv(GL_S, GL_EYE_PLANE, Splane);
glTexGenfv(GL_T, GL_EYE_PLANE, Tplane);glTexGenfv(GL_T, GL_EYE_PLANE, Tplane);
glTexGenfv(GL_R, GL_EYE_PLANE, Rplane);glTexGenfv(GL_R, GL_EYE_PLANE, Rplane);
glTexGenfv(GL_Q, GL_EYE_PLANE, Qplane);glTexGenfv(GL_Q, GL_EYE_PLANE, Qplane);
glEnable(GL_TEXTURE_GEN_S);glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);glEnable(GL_TEXTURE_GEN_Q);

Each plane equation is transformed by current inverse Each plane equation is transformed by current inverse
modelview matrix (a very handy thing for us)modelview matrix (a very handy thing for us)

Eye Linear
Texgen Transform

Plane equations form a projective transform

The 4 eye linear plane equations form a 4x4 matrix
(No need for the texture matrix!)

Plane equations form a projective transformPlane equations form a projective transform

The 4 eye linear plane equations form a 4x4 matrixThe 4 eye linear plane equations form a 4x4 matrix
(No need for the texture matrix!)(No need for the texture matrix!)

s
t
r
q

ss
tt
rr
qq

Splane[0] Splane[1] Splane[2] Splane[3]Splane[0] Splane[1] Splane[0] Splane[1] Splane[2] Splane[2] Splane[3]Splane[3]

Tplane[0] Tplane[1] Tplane[2] Tplane[3]Tplane[0] Tplane[1] Tplane[2] Tplane[3]Tplane[0] Tplane[1] Tplane[2] Tplane[3]

Rplane[0] Rplane[1] Rplane[2] Rplane[3]Rplane[0] Rplane[0] Rplane[1] Rplane[2] Rplane[1] Rplane[2] Rplane[3]Rplane[3]

Qplane[0] Qplane[1] Qplane[2] Qplane[3]Qplane[0] Qplane[1] Qplane[2] Qplane[3]Qplane[0] Qplane[1] Qplane[2] Qplane[3]

===
xe
ye
ze
we

xxee
yyee
zzee
wwee

Shadow Map Eye Linear
Texgen Transform

1/21/21/2

1/21/21/2

1/21/21/2

111

1/21/21/2

1/21/21/2

1/21/21/2
Light

frustum
(projection)

matrix

LightLight
frustumfrustum

(projection)(projection)
matrixmatrix

Light
view

(look at)
matrix

LightLight
viewview

(look at)(look at)
matrixmatrix

Inverse
eye
view

(look at)
matrix

InverseInverse
eyeeye
viewview

(look at)(look at)
matrixmatrix

Eye
view

(look at)
matrix

EyeEye
viewview

(look at)(look at)
matrixmatrix

Modeling
matrix

ModelingModeling
matrixmatrix

xo
yo
zo
wo

xxoo
yyoo
zzoo
wwoo

xe
ye
ze
we

xxee
yyee
zzee
wwee

===

===
xe
ye
ze
we

xxee
yyee
zzee
wwee

s
t
r
q

ss
tt
rr
qq

glTexGen automatically applies this
when modelview matrix contains just

the eye view transform

glTexGen automatically applies this glTexGen automatically applies this
when modelview matrix contains just when modelview matrix contains just

the eye view transformthe eye view transform

Supply this combined transform to glTexGenSupply this combined transform to glTexGenSupply this combined transform to glTexGen

Shadow Map
Operation

Automatic depth map lookups
• After the eye linear texgen with the proper transform loaded

– (s/q, t/q) is the fragment’s corresponding location within
the light’s depth texture

– r/q is the Z planar distance of the fragment relative to the
light’s frustum, scaled and biased to [0,1] range

• Next compare texture value at (s/q, t/q) to value r/q

– if texture[s/q, t/q] ≅ r/q then not shadowed

– if texture[s/q, t/q] < r/q then shadowed

Automatic depth map lookupsAutomatic depth map lookups
•• After the eye linear texgen with the proper transform loaded After the eye linear texgen with the proper transform loaded

–– (s/q, t/q) is the fragment’s corresponding location within (s/q, t/q) is the fragment’s corresponding location within
the light’s depth texturethe light’s depth texture

–– r/q is the Z planar distance of the fragment relative to the r/q is the Z planar distance of the fragment relative to the
light’s frustum, scaled and biased to [0,1] rangelight’s frustum, scaled and biased to [0,1] range

•• Next compare texture value at (s/q, t/q) to value r/qNext compare texture value at (s/q, t/q) to value r/q

–– if texture[s/q, t/q] if texture[s/q, t/q] ≅≅ r/q then r/q then not shadowednot shadowed

–– if texture[s/q, t/q] < r/q then if texture[s/q, t/q] < r/q then shadowedshadowed

Dedicated Hardware
Shadow Mapping Support

SGI RealityEngine and InfiniteReality Hardware
• Performs the shadow test as a texture filtering operation

– looks up texel at (s/q, t/q) in a 2D texture

– compares lookup value to r/q

– if texel is greater than or equal to r/q, then generate 1.0

– if texel is less than r/q, then generate 0.0

• Modulate color with result

– zero if fragment is shadowed or unchanged color if not

SGI RealityEngine and InfiniteReality HardwareSGI RealityEngine and InfiniteReality Hardware
•• Performs the shadow test as a texture filtering operationPerforms the shadow test as a texture filtering operation

–– looks up texel at (s/q, t/q) in a 2D texturelooks up texel at (s/q, t/q) in a 2D texture

–– compares lookup value to r/qcompares lookup value to r/q

–– if texel is greater than or equal to r/q, then generate 1.0if texel is greater than or equal to r/q, then generate 1.0

–– if texel is less than r/q, then generate 0.0if texel is less than r/q, then generate 0.0

•• Modulate color with resultModulate color with result

–– zero if fragment is shadowed or unchanged color if notzero if fragment is shadowed or unchanged color if not

OpenGL Extensions for
Shadow Map Hardware

Two extensions work together
• SGIX_depth_texture

– supports high-precision depth texture formats

– copy from depth buffer to texture memory supported

• SGIX_shadow

– adds “shadow comparison” texture filtering mode

– compares r/q to texel value at (s/q, t/q)

Two extensions work togetherTwo extensions work together
•• SGIX_depth_textureSGIX_depth_texture

–– supports highsupports high--precision depth texture formatsprecision depth texture formats

–– copy from depth buffer to texture memory supportedcopy from depth buffer to texture memory supported

•• SGIX_shadowSGIX_shadow

–– adds “shadow comparison” texture filtering modeadds “shadow comparison” texture filtering mode

–– compares r/q to texel value at (s/q, t/q)compares r/q to texel value at (s/q, t/q)

An Alternative to Dedicated
Shadow Mapping Hardware

Consumer 3D hardware solution
• Proposed by Wolfgang Heidrich in his 1999 Ph.D. thesis

• Leverages today’s consumer multi-texture hardware

– 1st texture unit accesses 2D depth map texture

– 2nd texture unit accesses 1D Z range texture

• Extended texture environment subtracts 2nd texture from 1st

– shadowed if greater than zero, unshadowed otherwise

– use alpha test to discard shadowed fragments

Consumer 3D hardware solutionConsumer 3D hardware solution
•• Proposed by Wolfgang Heidrich in his 1999 Ph.D. thesisProposed by Wolfgang Heidrich in his 1999 Ph.D. thesis

•• Leverages today’s consumer multiLeverages today’s consumer multi--texture hardwaretexture hardware

–– 1st texture unit accesses 2D depth map texture1st texture unit accesses 2D depth map texture

–– 2nd texture unit accesses 1D Z range texture2nd texture unit accesses 1D Z range texture

•• Extended texture environment subtracts 2nd texture from 1stExtended texture environment subtracts 2nd texture from 1st

–– shadowed if greater than zero, unshadowed otherwiseshadowed if greater than zero, unshadowed otherwise

–– use alpha test to discard shadowed fragmentsuse alpha test to discard shadowed fragments

Dual-texture Shadow
Mapping Approach

Constructing the depth map texture
• Render scene from the light view (can disable color writes)

– use glPolygonOffset to bias depth values to avoid surfaces
shadowing themselves in subsequent shadow test pass

– perform bias during depth map construct instead of during
shadow testing pass so bias will be in depth buffer space

• Read back depth buffer with glReadPixels as unsigned bytes

• Load same bytes into GL_INTENSITY8 texture via
glTexImage2D

Constructing the depth map textureConstructing the depth map texture
•• Render scene from the light view (can disable color writes)Render scene from the light view (can disable color writes)

–– use use glPolygonOffsetglPolygonOffset to bias depth values to avoid surfaces to bias depth values to avoid surfaces
shadowing themselves in subsequent shadow test passshadowing themselves in subsequent shadow test pass

–– perform bias during depth map construct instead of during perform bias during depth map construct instead of during
shadow testing pass so bias will be in depth buffer spaceshadow testing pass so bias will be in depth buffer space

•• Read back depth buffer with Read back depth buffer with glReadPixelsglReadPixels as unsigned bytesas unsigned bytes

•• Load same bytes into Load same bytes into GL_INTENSITY8GL_INTENSITY8 texture via texture via
glTexImage2DglTexImage2D

Dual-texture Shadow
Mapping Approach

Depth map texture issues
• limited to 8-bit precision

– not a lot of precision of depth

– more about this issue later

• un-extended OpenGL provides no direct depth copy

– cannot copy depth buffer to a texture directly

– must glReadPixels, then glTexImage2D

Depth map texture issuesDepth map texture issues
•• limited to 8limited to 8--bit precisionbit precision

–– not a lot of precision of depthnot a lot of precision of depth

–– more about this issue latermore about this issue later

•• unun--extended OpenGL provides no direct depth copyextended OpenGL provides no direct depth copy

–– cannot copy depth buffer to a texture directlycannot copy depth buffer to a texture directly

–– must must glReadPixelsglReadPixels, then , then glTexImage2DglTexImage2D

Dual-texture Shadow
Mapping Approach

Two-pass shadow determination
• 1st pass: draw everything shadowed

– render scene with light disabled -or- dimmed substantially
and specular light color of zero

– with depth testing enabled

• 2nd pass: draw unshadowed, rejecting shadowed fragments

– use glDepthFunc(GL_EQUAL) to match 1st pass pixels

– enable the light source, un-rejected pixels = unshadowed

– use dual-texture as described in subsequent slides

TwoTwo--pass shadow determinationpass shadow determination
•• 1st pass: draw everything shadowed1st pass: draw everything shadowed

–– render scene with light disabled render scene with light disabled --oror-- dimmed substantially dimmed substantially
and specular light color of zeroand specular light color of zero

–– with depth testing enabledwith depth testing enabled

•• 2nd pass: draw unshadowed, rejecting shadowed fragments2nd pass: draw unshadowed, rejecting shadowed fragments

–– use use glDepthFuncglDepthFunc((GL_EQUALGL_EQUAL) to match 1st pass pixels) to match 1st pass pixels

–– enable the light source, unenable the light source, un--rejected pixels = rejected pixels = ununshadowedshadowed

–– use dualuse dual--texture as described in subsequent slidestexture as described in subsequent slides

Dual-texture Shadow
Mapping Approach

Dual-texture configuration
• 1st texture unit

– bind to 2D texture containing light’s depth map texture

– intensity texture format (same value in RGB and alpha)

• 2nd texture unit

– bind to 1D texture containing a linear ramp from 0 to 1

– maps S texture coordinate in [0, 1] range to intensity value
in [0, 1] range

DualDual--texture configurationtexture configuration
•• 1st texture unit1st texture unit

–– bind to 2D texture containing light’s depth map texturebind to 2D texture containing light’s depth map texture

–– intensity texture format (same value in RGB and alpha)intensity texture format (same value in RGB and alpha)

•• 2nd texture unit2nd texture unit

–– bind to 1D texture containing a linear ramp from 0 to 1bind to 1D texture containing a linear ramp from 0 to 1

–– maps S texture coordinate in [0, 1] range to intensity value maps S texture coordinate in [0, 1] range to intensity value
in [0, 1] rangein [0, 1] range

Dual-texture Shadow
Mapping Approach

Texgen Configuration
• 1st texture unit using 2D texture

– generate (s/q, t/q) to access depth map texture, ignore R

Texgen ConfigurationTexgen Configuration
•• 1st texture unit using 2D texture1st texture unit using 2D texture

–– generate (s/q, t/q) to access depth map texture, ignore Rgenerate (s/q, t/q) to access depth map texture, ignore R

1/21/21/2

1/21/21/2

111

1/21/21/2

1/21/21/2
Light

frustum
(projection)

matrix

LightLight
frustumfrustum

(projection)(projection)
matrixmatrix

Light
view

(look at)
matrix

LightLight
viewview

(look at)(look at)
matrixmatrix

Inverse
eye
view

(look at)
matrix

InverseInverse
eyeeye
viewview

(look at)(look at)
matrixmatrix

===
xe
ye
ze
we

xxee
yyee
zzee
wwee

s
t

q

ss
tt

qq

Supply this combined transform to glTexGenSupply this combined transform to glTexGenSupply this combined transform to glTexGen
glTexGen

automatically
applies this

glTexGenglTexGen
automaticallyautomatically
applies thisapplies this

Dual-texture Shadow
Mapping Approach

Texgen Configuration
• 2nd texture unit using 1D texture

– generate Z planar distance in S, flips what R is into S

Texgen ConfigurationTexgen Configuration
•• 2nd texture unit using 1D texture2nd texture unit using 1D texture

–– generate Z planar distance in S, flips what R is into Sgenerate Z planar distance in S, flips what R is into S

1/21/21/2

1/21/21/2

111

1/21/21/2

1/21/21/2
Light

frustum
(projection)

matrix

LightLight
frustumfrustum

(projection)(projection)
matrixmatrix

Light
view

(look at)
matrix

LightLight
viewview

(look at)(look at)
matrixmatrix

Inverse
eye
view

(look at)
matrix

InverseInverse
eyeeye
viewview

(look at)(look at)
matrixmatrix

===
xe
ye
ze
we

xxee
yyee
zzee
wwee

s

q

ss

qq

Supply this combined transform to glTexGenSupply this combined transform to glTexGenSupply this combined transform to glTexGen
glTexGen

automatically
applies this

glTexGenglTexGen
automaticallyautomatically
applies thisapplies this

0 0 1 00 0 1 00 0 1 0

111
1/21/21/21/21/21/2

Dual-texture Shadow
Mapping Approach

Texture environment (texenv) configuration
• Compute the difference between Tex0 from Tex1

– un-extended OpenGL texenv cannot subtract

• But can use standard EXT_texture_env_combine extension

– add signed operation

– compute fragment alpha as
alpha(Tex0) + (1 - alpha(Tex1)) - 0.5

– result is greater or equal to 0.5 when Tex0 >= Tex1
result is less than 0.5 when Tex0 < Tex1

Texture environment (texenv) configurationTexture environment (texenv) configuration
•• Compute the difference between Compute the difference between Tex0Tex0 from from Tex1Tex1

–– unun--extended OpenGL texenv cannot subtractextended OpenGL texenv cannot subtract

•• But can use standard But can use standard EXT_texture_env_combineEXT_texture_env_combine extensionextension

–– add signed operationadd signed operation

–– compute fragment alpha ascompute fragment alpha as
alpha(alpha(Tex0Tex0) + (1) + (1 -- alpha(alpha(Tex1Tex1)))) -- 0.50.5

–– result is greater or equal to 0.5 when result is greater or equal to 0.5 when Tex0Tex0 >= >= Tex1Tex1
result is less than 0.5 when result is less than 0.5 when Tex0Tex0 < < Tex1Tex1

Dual-texture Shadow
Mapping Approach

Texture environment (texenv) specifics
glActiveTextureARB(GL_TEXTURE0_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_PRIMARY_COLOR_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_EXT, GL_SRC_ALPHA);

glActiveTextureARB(GL_TEXTURE1_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_PREVIOUS_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_ADD_SIGNED_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_PREVIOUS_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_EXT, GL_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);

Texture environment (texenv) specificsTexture environment (texenv) specifics
glActiveTextureARB(GL_TEXTUREglActiveTextureARB(GL_TEXTURE00_ARB);_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXTGL_COMBINE_EXT););

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGBRGB_EXT, _EXT, GL_REPLACEGL_REPLACE););
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGBRGB_EXT, _EXT, GL_PRIMARY_COLOR_EXTGL_PRIMARY_COLOR_EXT););
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGBRGB_EXT, _EXT, GL_SRC_COLORGL_SRC_COLOR););

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHAALPHA_EXT, _EXT, GL_REPLACEGL_REPLACE););
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHAALPHA_EXT, _EXT, GL_TEXTUREGL_TEXTURE););
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHAALPHA_EXT, _EXT, GL_SRC_ALPHAGL_SRC_ALPHA););

glActiveTextureARB(GL_TEXTUREglActiveTextureARB(GL_TEXTURE11_ARB);_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXTGL_COMBINE_EXT););

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGBRGB_EXT, _EXT, GL_REPLACEGL_REPLACE););
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGBRGB_EXT, _EXT, GL_PREVIOUS_EXTGL_PREVIOUS_EXT););
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGBRGB_EXT, _EXT, GL_SRC_COLORGL_SRC_COLOR););

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHAALPHA_EXT, _EXT, GL_ADD_SIGNED_EXTGL_ADD_SIGNED_EXT););
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE00__ALPHAALPHA_EXT, _EXT, GL_PREVIOUS_EXTGL_PREVIOUS_EXT););
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDglTexEnvi(GL_TEXTURE_ENV, GL_OPERAND00__ALPHAALPHA_EXT, _EXT, GL_SRC_ALPHAGL_SRC_ALPHA););
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE11__ALPHAALPHA_EXT, _EXT, GL_TEXTUREGL_TEXTURE););
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDglTexEnvi(GL_TEXTURE_ENV, GL_OPERAND11__ALPHAALPHA_EXT, _EXT, GL_ONE_MINUS_SRC_ALPHAGL_ONE_MINUS_SRC_ALPHA););

Dual-texture Shadow
Mapping Approach

Post-texture environment result
• RGB is lit color (lighting is enabled during second pass)

• Alpha is the biased difference of T0 and T1

– unshadowed fragments have alpha >= 0.5

– shadowed fragments have an alpha of < 0.5

PostPost--texture environment resulttexture environment result
•• RGB is lit color (lighting is enabled during second pass)RGB is lit color (lighting is enabled during second pass)

•• Alpha is the biased difference of T0 and T1Alpha is the biased difference of T0 and T1

–– unshadowed fragments have alpha >= 0.5unshadowed fragments have alpha >= 0.5

–– shadowed fragments have an alpha of < 0.5shadowed fragments have an alpha of < 0.5

Dual-texture Shadow
Mapping Approach

Next, reject shadowed fragments
• shadowed or unshadowed depends on alpha value

– less than 0.5 means shadowed

• use the alpha test to rejected shadowed fragments

– glEnable(GL_ALPHA_TEST)

– glAlphaFunc(GL_GREATER, 0.5)

Next, reject shadowed fragmentsNext, reject shadowed fragments
•• shadowed or unshadowed depends on alpha valueshadowed or unshadowed depends on alpha value

–– less than 0.5 means shadowedless than 0.5 means shadowed

•• use the alpha test to rejected shadowed fragmentsuse the alpha test to rejected shadowed fragments

–– glEnable(GL_ALPHA_TEST)glEnable(GL_ALPHA_TEST)

–– glAlphaFunc(GL_GREATER, 0.5)glAlphaFunc(GL_GREATER, 0.5)

Dual-texture Shadow
Mapping Approach

Careful about self-shadowing
• fragments are likely to shadow themselves

– surface casting shadow
must not shadow itself

– “near equality” common
when comparing Tex0
and Tex1

Careful about selfCareful about self--shadowingshadowing
•• fragments are likely to shadow themselvesfragments are likely to shadow themselves

–– surface casting shadowsurface casting shadow
must not shadow itselfmust not shadow itself

–– “near equality” common“near equality” common
when comparing Tex0when comparing Tex0
and Tex1and Tex1

Dual-texture Shadow
Mapping Approach

Biasing values in depth map helps
• recall glPolygonOffset suggestion during the depth map

construction pass

• this bias should be done during depth map construction

– biases in the texgen transform do not work

– problem is depth map has non-linear distribution due to
projective frustum

• polygon offset scale keeps edge-on polygons from self-
shadowing

Biasing values in depth map helpsBiasing values in depth map helps
•• recall recall glPolygonOffsetglPolygonOffset suggestion during the depth map suggestion during the depth map

construction passconstruction pass

•• this bias should be done during depth map constructionthis bias should be done during depth map construction

–– biases in the texgen transform do biases in the texgen transform do notnot workwork

–– problem is depth map has nonproblem is depth map has non--linear distribution due to linear distribution due to
projective frustumprojective frustum

•• polygon offset scale keeps edgepolygon offset scale keeps edge--on polygons from selfon polygons from self--
shadowingshadowing

Depth Map Bias
Issues

How much polygon offset bias dependsHow much polygon offset bias dependsHow much polygon offset bias depends

Too little bias,
everything begins to
shadow

Too little bias,Too little bias,
everything begins toeverything begins to
shadowshadow

Too little bias, shadow
starts too far back
Too little bias, shadowToo little bias, shadow
starts too far backstarts too far back

Just rightJust rightJust right

Selecting the
Depth Map Bias

Not that hard
• Usually the following works well

– glPolygonOffset(scale = 1.0, bias = 4.0)

• Usually better to error on the side of too much bias

– adjust to suit the shadow issues in your scene

• Depends somewhat on shadow map precision

– more precision requires less of a bias

Not that hardNot that hard
•• Usually the following works wellUsually the following works well

–– glPolygonOffset(scale = 1.0, bias = 4.0)glPolygonOffset(scale = 1.0, bias = 4.0)

•• Usually better to error on the side of too much biasUsually better to error on the side of too much bias

–– adjust to suit the shadow issues in your sceneadjust to suit the shadow issues in your scene

•• Depends somewhat on shadow map precisionDepends somewhat on shadow map precision

–– more precision requires less of a biasmore precision requires less of a bias

Dual-texture Shadow
Mapping Precision

Is 8-bit precision enough?
• yes, for some simple scenes

– when the objects are relatively distant from the light, but
still relatively close together

• no, in general

– an 8-bit depth buffer is not enough depth discrimination

– and the precision is badly distributed because of
perspective

Is 8Is 8--bit precision enough?bit precision enough?
•• yes, for some simple scenesyes, for some simple scenes

–– when the objects are relatively distant from the light, but when the objects are relatively distant from the light, but
still relatively close togetherstill relatively close together

•• no, in generalno, in general

–– an 8an 8--bit depth buffer is not enough depth discriminationbit depth buffer is not enough depth discrimination

–– and the precision is badly distributed because of and the precision is badly distributed because of
perspectiveperspective

Dual-texture Shadow
Mapping Precision

Conserving your 8-bit depth map precisionConserving your 8Conserving your 8--bit depth map precisionbit depth map precision

Frustum confined to objects of interestFrustum confined to objects of interestFrustum confined to objects of interest Frustum expanded out considerably
breaks down the shadows
Frustum expanded out considerablyFrustum expanded out considerably
breaks down the shadowsbreaks down the shadows

Improving Depth Map
Precision

Use linear depth precision [Wolfgang 99]
• During depth map construction

– generate S texture coordinate as eye planar Z distance
scaled to [0, 1] range

– lookup S in identity 1D intensity texture

– write texture result into color frame buffer

– still using standard depth testing

– read alpha (instead of depth) and load it in depth map texture

– alpha will have linear depth distribution (better!)

Use linear depth precision [Wolfgang 99]Use linear depth precision [Wolfgang 99]
•• During depth map constructionDuring depth map construction

–– generate S texture coordinate as eye planar Z distance generate S texture coordinate as eye planar Z distance
scaled to [0, 1] rangescaled to [0, 1] range

–– lookup S in identity 1D intensity texturelookup S in identity 1D intensity texture

–– write texture result into color frame bufferwrite texture result into color frame buffer

–– still using standard depth testingstill using standard depth testing

–– read alpha (instead of depth) and load it in depth map textureread alpha (instead of depth) and load it in depth map texture

–– alpha will have linear depth distribution (better!)alpha will have linear depth distribution (better!)

Improving Depth Map
Precision

More hardware color component precision
• high-end workstations support more color precision

– SGI’s InfiniteReality, RealityEngine, and Octane
workstations support 12-bit color component precision

• but no high precision color buffers in consumer 3D space

– consumer 3D designs too tied to 32-bit memory word size
of commodity RAM

– and overkill for most consumer applications anyway

More hardware color component precisionMore hardware color component precision
•• highhigh--end workstations support more color precisionend workstations support more color precision

–– SGI’s InfiniteReality, RealityEngine, and Octane SGI’s InfiniteReality, RealityEngine, and Octane
workstations support 12workstations support 12--bit color component precisionbit color component precision

•• but no high precision color buffers in consumer 3D spacebut no high precision color buffers in consumer 3D space

–– consumer 3D designs too tied to 32consumer 3D designs too tied to 32--bit memory word size bit memory word size
of commodity RAMof commodity RAM

–– and overkill for most consumer applications anywayand overkill for most consumer applications anyway

Improving Depth Map
Precision

Use multi-digit comparison
• fundamental shadow determination operation is a

comparison

– comparisons (unlike multiplies or other operations) are
easy to extend to higher precision

• think about comparing two 2-digit numbers: 54 and 82

– 54 is less than 82 simply based on the first digit (5 < 8)

– only when most-significant digits are equal do you need to
look at subsequent digits

Use multiUse multi--digit comparisondigit comparison
•• fundamental shadow determination operation is a fundamental shadow determination operation is a

comparisoncomparison

–– comparisons (unlike multiplies or other operations) are comparisons (unlike multiplies or other operations) are
easy to extend to higher precisioneasy to extend to higher precision

•• think about comparing two 2think about comparing two 2--digit numbers: 54 and 82digit numbers: 54 and 82

–– 54 is less than 82 simply based on the first digit (5 < 8)54 is less than 82 simply based on the first digit (5 < 8)

–– only when mostonly when most--significant digits are equal do you need to significant digits are equal do you need to
look at subsequent digitslook at subsequent digits

More Precision Allows
Larger Lights Frustums

Compare 8-bit to 16-bit precision for large frustumCompare 8Compare 8--bit to 16bit to 16--bit precision for large frustumbit precision for large frustum

8-bit: Large frustum breaks down the
shadows, not enough precision
88--bit: Large frustum breaks down the bit: Large frustum breaks down the
shadows, not enough precisionshadows, not enough precision

16-bit: Shadow looks just fine1616--bit: Shadow looks just finebit: Shadow looks just fine

Why Extra Precision
Helps

Where the precision is for previous imagesWhere the precision is for previous imagesWhere the precision is for previous images

Most significant 8 bits of the depth map,
pseudo-color inset magnifies variations
Most significant 8 bits of the depth map,Most significant 8 bits of the depth map,
pseudopseudo--color inset magnifies variationscolor inset magnifies variations

Least significant 8 bits of the depth map,
here is where the information is!
Least significant 8 bits of the depth map,Least significant 8 bits of the depth map,
here is where the information is!here is where the information is!

GeForce/Quadro
Precision Extension

Application of multi-digit comparison idea
• Read back depth buffer as 16-bit unsigned short values

• Load these values into GL_LUMINANCE8_ALPHA8 texture

– think of depth map as two 8-bit digits

• Two comparison passes

• Uses NV_register_combiners extension

– signed math and mux’ing helps

– enough operations to test equality and greater/less than

Application of multiApplication of multi--digit comparison ideadigit comparison idea
•• Read back depth buffer as 16Read back depth buffer as 16--bit unsigned short valuesbit unsigned short values

•• Load these values into GL_LUMINANCE8_ALPHA8 textureLoad these values into GL_LUMINANCE8_ALPHA8 texture

–– think of depth map as two 8think of depth map as two 8--bit digitsbit digits

•• Two comparison passesTwo comparison passes

•• Uses NV_register_combiners extensionUses NV_register_combiners extension

–– signed math and mux’ing helpssigned math and mux’ing helps

–– enough operations to test equality and greater/less thanenough operations to test equality and greater/less than

GeForce/Quadro
Precision Extension

Multi-digit comparison passes
• during clear, clear stencil buffer to 0

• 1st pass draws unshadowed scene as before

• 2nd pass draws unshadowed

– alpha = bigDigit(Tex0) < bigDigit(Tex1)

– alpha test with glAlphaFunc(GL_GREATER, 0.0)

– and write 1 into stencil buffer when alpha test passes

• needs 3rd pass for when bigDigit(Tex0) = bigDigit(Tex1)

MultiMulti--digit comparison passesdigit comparison passes
•• during clear, clear stencil buffer to 0during clear, clear stencil buffer to 0

•• 1st pass draws unshadowed scene as before1st pass draws unshadowed scene as before

•• 2nd pass draws unshadowed2nd pass draws unshadowed

–– alpha = bigDigit(Tex0) < bigDigit(Tex1)alpha = bigDigit(Tex0) < bigDigit(Tex1)

–– alpha test with glAlphaFunc(GL_GREATER, 0.0)alpha test with glAlphaFunc(GL_GREATER, 0.0)

–– and write 1 into stencil buffer when alpha test passesand write 1 into stencil buffer when alpha test passes

•• needs 3rd pass for when bigDigit(Tex0) = bigDigit(Tex1)needs 3rd pass for when bigDigit(Tex0) = bigDigit(Tex1)

GeForce/Quadro
Precision Extension

Third pass picks up the extra 8 bits of precision
• Use NV_register_combiners to assign alpha as follows

– if bigDigit(Tex1) > bigDigit(Tex0) then
alpha = 0

else
alpha = littleDigit(Tex0) - littleDigit(Tex1)

• Use alpha test with glAlphaFunc(GL_GREATER, 0.0)

• Also reject fragment if the stencil value is 1

– meaning the 2nd pass already updated the pixel

Third pass picks up the extra 8 bits of precisionThird pass picks up the extra 8 bits of precision
•• Use NV_register_combiners to assign alpha as followsUse NV_register_combiners to assign alpha as follows

–– if bigDigit(Tex1) > bigDigit(Tex0) thenif bigDigit(Tex1) > bigDigit(Tex0) then
alpha = 0alpha = 0

elseelse
alpha = littleDigit(Tex0) alpha = littleDigit(Tex0) -- littleDigit(Tex1)littleDigit(Tex1)

•• Use alpha test with glAlphaFunc(GL_GREATER, 0.0)Use alpha test with glAlphaFunc(GL_GREATER, 0.0)

•• Also reject fragment if the stencil value is 1Also reject fragment if the stencil value is 1

–– meaning the 2nd pass already updated the pixelmeaning the 2nd pass already updated the pixel

Combining Shadow Mapping
with other Techniques

Good in combination with techniques
• Use stencil to tag pixels as inside or outside of shadow

• use other rendering techniques in extra passes

– bump mapping

– texture decals, etc.

• Shadow mapping can be integrated into more complex multi-
pass rendering algorithms

Good in combination with techniquesGood in combination with techniques
•• Use stencil to tag pixels as inside or outside of shadowUse stencil to tag pixels as inside or outside of shadow

•• use other rendering techniques in extra passesuse other rendering techniques in extra passes

–– bump mappingbump mapping

–– texture decals, etc.texture decals, etc.

•• Shadow mapping can be integrated into more complex multiShadow mapping can be integrated into more complex multi--
pass rendering algorithmspass rendering algorithms

Issues with Shadow
Mapping (1)

Not without its problems
• Prone to aliasing artifacts

– “percentage closest” filtering helps this

– normal color filtering does not work well

• Depth bias is not completely foolproof

• Requires extra shadow map rendering pass and texture loading

• Higher resolution shadow map reduces blockiness

– but also increase texture loading expense

Not without its problemsNot without its problems
•• Prone to aliasing artifactsProne to aliasing artifacts

–– “percentage closest” filtering helps this“percentage closest” filtering helps this

–– normal color filtering does normal color filtering does notnot work wellwork well

•• Depth bias is not completely foolproofDepth bias is not completely foolproof

•• Requires extra shadow map rendering pass and texture loadingRequires extra shadow map rendering pass and texture loading

•• Higher resolution shadow map reduces blockinessHigher resolution shadow map reduces blockiness

–– but also increase texture loading expense but also increase texture loading expense

Issues with Shadow
Mapping (2)

Not without its problems
• Shadows are limited to view frustums

– could use six view frustums for omni-directional light

• Objects outside or crossing the near and far clip planes are
not properly accounted for by shadowing

– move near plane in as close as possible

– but too close throws away valuable depth map precision
when using a projective frustum

Not without its problemsNot without its problems
•• Shadows are limited to view frustumsShadows are limited to view frustums

–– could use six view frustums for omnicould use six view frustums for omni--directional lightdirectional light

•• Objects outside or crossing the near and far clip planes are Objects outside or crossing the near and far clip planes are
not properly accounted for by shadowingnot properly accounted for by shadowing

–– move near plane in as close as possiblemove near plane in as close as possible

–– but too close throws away valuable depth map precision but too close throws away valuable depth map precision
when using a projective frustumwhen using a projective frustum

Hybrid of Shadow Volumes
and Shadow Mapping

Very clever idea [McCool 98]
• Render scene from light source with depth testing

• Read back the depth buffer

• Use computer vision techniques to reconstruct the shadow
volume geometry from the depth buffer image

• Very reasonable results for complex scenes

• Only requires stencil

– no multitexture and texture environment differencing
required

Very clever idea [McCool 98]Very clever idea [McCool 98]
•• Render scene from light source with depth testingRender scene from light source with depth testing

•• Read back the depth bufferRead back the depth buffer

•• Use computer vision techniques to reconstruct the shadow Use computer vision techniques to reconstruct the shadow
volume volume geometrygeometry from the depth buffer from the depth buffer imageimage

•• Very reasonable results for complex scenesVery reasonable results for complex scenes

•• Only requires stencilOnly requires stencil

–– no multitexture and texture environment differencing no multitexture and texture environment differencing
requiredrequired

More Examples

Smooth surfaces with object self-shadowingSmooth surfaces with object selfSmooth surfaces with object self--shadowingshadowing

Note object self-shadowingNote object selfNote object self--shadowingshadowing

More Examples

Complex objects all shadowComplex objects all shadowComplex objects all shadow

More Examples

Even the floor casts shadowEven the floor casts shadowEven the floor casts shadow

Note shadow
leakage due to
infinitely thin floor

Could be fixed by
giving floor
thickness

Note shadow Note shadow
leakage due toleakage due to
infinitely thin floorinfinitely thin floor

Could be fixed byCould be fixed by
giving floor giving floor
thicknessthickness

Shadow Mapping
Source Code

Find it on the NVIDIA web site
• The source code

– http://www.nvidia.com/opengl/ShadowMap

– Works on TNT, GeForce, & Quadro

– And vendors that support EXT_texture_env_combine

• NVIDIA OpenGL Extension Specifications

– documents EXT_texture_env_combine and
NV_register_combiners

– http://www.nvidia.com/opengl/openglspecs

Find it on the NVIDIA web siteFind it on the NVIDIA web site
•• The source codeThe source code

–– http://www.nvidia.com/opengl/ShadowMaphttp://www.nvidia.com/opengl/ShadowMap

–– Works on TNT, GeForce, & QuadroWorks on TNT, GeForce, & Quadro

–– And vendors that support EXT_texture_env_combineAnd vendors that support EXT_texture_env_combine

•• NVIDIA OpenGL Extension SpecificationsNVIDIA OpenGL Extension Specifications

–– documents EXT_texture_env_combine and documents EXT_texture_env_combine and
NV_register_combinersNV_register_combiners

–– http://www.nvidia.com/opengl/openglspecshttp://www.nvidia.com/opengl/openglspecs

Credits

The inspiration for these ideas
• Wolfgang Heidrich, Max-Planck Institute for Computer

Science

– original dual-texture shadow mapping idea

– read his thesis High-quality Shading and Lighting for
Hardware-accelerated Rendering

• Michael McCool, University of Waterloo

– suggested idea for multi-digit shadow comparisons

The inspiration for these ideasThe inspiration for these ideas
•• Wolfgang Heidrich, MaxWolfgang Heidrich, Max--Planck Institute for Computer Planck Institute for Computer

ScienceScience

–– original dualoriginal dual--texture shadow mapping ideatexture shadow mapping idea

–– read his thesis read his thesis HighHigh--quality Shading and Lighting for quality Shading and Lighting for
HardwareHardware--accelerated Renderingaccelerated Rendering

•• Michael McCool, University of WaterlooMichael McCool, University of Waterloo

–– suggested idea for multisuggested idea for multi--digit shadow comparisonsdigit shadow comparisons

